Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis.
نویسنده
چکیده
Chromosomal DNA and mitochondrial dysfunctions play a role on mammalian cell death induced by oxidative stress. The major biochemical dysfunction of chromosome is the presence of an ordered cleavage of the DNA backborn, which is separated and visualized as an electrophoretic pattern of fragments. Oxidative stress provides chromatin dysfunction such as single strand and double strand DNA fragmentation leading to cell death. More than 1 Mb of giant DNA, 200-800 kb or 50-300 kb high molecular weight (HMW) DNA and internucleosomal DNA fragments are produced during apoptosis or necrosis induced by oxidative stress such as glutathione (GSH) depletion in several types of mammalian cells. Reactive oxygen species (ROS)-mediated DNA fragmentation is enhanced by polyunsaturated fatty acids including arachidonic acid or their hydroperoxides, leading to necrosis. Mitochondrial dysfunction on decrease of trans membrane potential, accumulation of ROS, membrane permeability transition and release of apoptotic factors during apoptosis or necrosis has been implicated. This review refers to the correlation of chromosomal DNA fragmentation and apoptosis or necrosis induced by GSH depletion, and the possible mechanisms of oxidative stress-induced cell death.
منابع مشابه
Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen.
Ca2+ accumulates in the nucleus and DNA undergoes enzymatic cleavage into internucleosome-length fragments before acetaminophen and dimethylnitrosamine produce hepatic necrosis in vivo and toxic cell death in vitro. However, Ca(2+)-endonuclease fragmentation of DNA is characteristic of apoptosis, a type of cell death considered biochemically and functionally distinct from toxic cell death. The ...
متن کامل[Letter to the Editor] DNA Fragmentation Is Not Associated with Apoptosis in Zerumbone-induced HepG2 Cells
Zerumbone is a cytotoxic compound isolated from the herbal plant, Zingiber zerumbet Smith, which exhibits antitumor activity [1-2], anti-inflammatory effects and possesses anti-proliferative potentials in a variety of cell lines [3-4]. DNA fragmentation indicates an early event of apoptosis leading to cell death due to the absence of new cellular proteins synthesizing for cell survival. Previou...
متن کاملPromoting effects of polyunsaturated fatty acids on chromosomal giant DNA fragmentation associated with cell death induced by glutathione depletion.
Glutamate and buthionine sulfoximine (BSO) both reduce intracellular glutathione (GSH) concentration but by different mechanisms, and thereby induce cell death in C6 rat glioma cells. The effects of lipid peroxidation on chromosomal DNA damage during the GSH depletion-induced cell death were assessed. Polyunsaturated fatty acids (PUFA), such as arachidonic acid (AA), gamma-linolenic acid and li...
متن کاملBerberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...
متن کاملArachidonic acid promotes glutamate-induced cell death associated with necrosis by 12- lipoxygenase activation in glioma cells.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular and molecular medicine
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2004